Knowledge Organiser – 4.1.1 Cell Biology

4.1.1 Cell Structure

form different types of cells.

differentiate throughout life.

early stage.

Click on the links below

BBC bitesize

freesciencelessons

AmoebaSisters

nucleus

- cvtoplasm
- a cell membrane
- mitochondria
- ribosomes.

In addition to the parts found cells often have:

- chloroplasts
- a permanent vacuole filled
- Plant and algal cells also have cellulose, which strengthen

- Nucleus	
Cytoplasm	
Mitochondria	and a second sec
Chloroplast	Ovum cell
l the animal and plant cells	where the the
e following	Nerve cell
ound in animal cells, plant	Root hair Vacuale
filled with cell sap. so have a cell wall made of gthens the cell	Cell membrane
 4.1.1.5 Microscopy Electron microscope has much higher magnific resolving power than a lig microscope. Can be used to study cell finer detail. 	cation and ght Actua size s in much 2

understand many more sub-cellular

structures.

Bone cel Sperm cel 0000000000 Nucleus Phloem Xylem Image size

Actual size

Magnification

elisir novnov (ksirlikir novnov (ksirlikir novnov (ksirlikir

Columnar epithelial cel

Smooth muscle cells

Magnification

Image size

Magnification

Image size

Actual size

Red blood cell

Click on the links below for online content

4.1.1.3. Cell specialisation:

BBC bitesize

freesciencelessons

& freesciencelessons

FocuseLearning

TedEd

4.1.1.5 Microscopy

BBC bitesize

freesciencelessons

TedEd

FocuseLearning

Stem Cells muscle cells As an organism develops, cells differentiate to ntestinal cells • Most types of animal cell differentiate at an iver cells blood cell • Many types of plant cells retain the ability to cardiac cells nerve cel

Knowledge Organiser – 4.1.2 Cell Biology

Click on the links below

for online content

Required

Practical:

Miscroscopy

BBC bitesize

& BBC bitesize

freesciencelessons

Using a graticule

FocuseLearning

people have ethical or religious objections.

the blood for respiration.

FocuseLearning

Click on the links below

FocuseLearning

Knowledge Organiser – 4.2 Organisation

Click on the links below for online content

for online content	4.2.1 Principles	of organisation		4.2.2 Animal tissues, organs and organ system		
4.2.1 Principles of	4.2.1 De	4.2.1 Definitions			gestive system	bile
organisation BBC bitesize	Cells The org hai	e basic building blocks of anisms. Eg. Muscle, skir r and palisade leaf cells	f all living n, nerve, root	Salivary		carboh
<u>AmoebaSisters</u>	Tissue A g and xyl	roup of cells with a simi I function (job). Eg. Mus em and epidermal tissue	lar structure scle, heart,	gianus	Oesophagus	digestiv
<u>TedEd</u>	Organs A g fur ste	roup of tissues perform ction. Eg. Heart, liver, b m, leaf & flower	ing a specific rain, roots,	Liver Gall bladder	Stomach	egestic emulsil
4.2.2.1 Human digestive system	Organ Gro systems for ner	oups of organs working t m an organism. Eg. circu vous & transpiration sys	together to Ilatory, stems	Small intestine	Pancreas	fats
BBC bitesize	Digestive Org system wo	an system in which sever rk together to digest & a	eral organs absorb food.	Rectum	intestine	gall bla
freesciencelessons	Enzyme	Produced	Nutrients acted upon	Products (smaller molecules)	Optimum pH & temperature	glucose glycoge
& freesciencelessons	Carbohydrase Eg. Amylase	Salivary glands	Carbohydrate Eg. starch	Simple sugars Eg. glucose	pH7 37°C	gut lipid
<u>TedEd</u>	Protease	Stomach, pancreas	Protein	Amino acids	pH2 37°C	liver
<u>FocuseLearning</u>	Lipase	Pancreas, small intestine	Lipid (fats & oils)	Glycerol & fatty acids	рН8 37°С	metabo
4.2.2.1 Enzymes BBC bitesize & BBC bitesize freesciencelessons	Enzymes are biological cata that breakdow food into small soluble molecu that can be absorbed into the bloodstream fr	hysts n , lles the	active site	Lock & Key Theory	product	microv pancre proteir starch
& freesciencelessons AmoebaSisters	the digestive system. <u>Denature</u> . If the	enzyme + substrate entering active site optimum conditions are	rate enzyme/product complex an enzyme, it loses it's sha	enzyme + product leaving active site	sugar villi	

attach to the substrate (nutrient molecule). It is "denatured".

bile	Made in the liver, stored in gall bladder. Emulsifies fats to for digestion and neutralises stomach acid.
carbohydrate	Food consisting of sugars, starch and cellulose. Carbohydrates are vital for energy in humans and are stored as fat if eaten in excess.
digestion	The breakdown of large insoluble food molecules to smaller soluble ones.
digestive system	Organ system involved in breaking food down so that it can be absorbed into the bloodstream.
egestion	The process of passing out the remains of food that has not been digested, as faeces, through the anus.
emulsify	To mix water with lipids to produce a cloudy mixture called an emulsion.
fats	Naturally occurring compounds of carbon, hydrogen and oxygen. They are esters made from fatty acids and glycerol.
fatty acids	Carboxylic acids with a long chain of carbon atoms. Fatty acids react with glycerol to produce lipids (fats and oils).
gall bladder	Stores bile before releasing it into the duodenum.
glucose	A simple sugar used by cells for respiration.
glycogen	Animals store glucose as glycogen in their liver and muscle tissues.
gut	The digestive system.
lipid	Fat or oils, composed of fatty acids and glycerol.
liver	The large organ, beside the stomach, which has many functions, including processing substances absorbed by the digestive system and a role in the storage of the body's carbohydrate.
metabolism	All the chemical reactions in the cells of an organism, including respiration.
microvilli	Projections from the surface of an epithelial cell of the small intestine wall.
pancreas	Large gland located in the abdomen near the stomach which produces digestive enzymes and the hormone insulin.
protein	Organic compound made up of amino acid molecules. Proteins are needed by the body for cell growth and repair.
starch	A type of carbohydrate. Plants can turn the glucose produced in photosynthesis into starch for storage
sugar	A simple carbohydrate that is sweet to the taste.
villi	Finger-like projections in the small intestine that provide a large surface area for the absorption of food.

KS3 Reminders Food Groups:

BBC bitesize

<u>TedEd</u>

Knowledge Organiser – 4.2 Organisation

Knowledge Organiser – 4.2 Organisation

4.2.2.5 Health issues & Types of disease

BBC bitesize

freesciencelessons

• diet lifestyle factors such as alcohol and other drugs •

genetic diseases and conditions

stress

cancer

•

diabetes

heart disease

or other organisms, e.g.

neurological disorders

situations that may occur in a person's life

another, e.g. measles, food poisoning and malaria

non-communicable, which are not transferred between people

Other factors that can effect physical and mental health include:

Healthy

Blocked

Blood clot

Reduced

blood flow

- Obesity as a risk factor for Type 2 diabetes.
- The effect of alcohol on liver & brain function.
- Effect of smoking on lung disease & lung ٠ cancer.
- Effects of smoking & alcohol on unborn babies.
- Carcinogens, including ionising radiation, as risk factors in cancer.

4.2.2.7 Cancer

Benign tumours are abnormal cell growths contained in one area, usually within a membrane. They do not invade other parts of the body. Malignant tumour cells are cancers. Invade neighbouring tissues and spread to different parts of the body where they form secondary tumours.

Stoma closed

Stoma open

4.2.2.6: Lifestyle effect on noncommunicable disease BBC bitesize

& BBC Bitesize

& BBC Bitesize

freesciencelessons

4.2.2.7 Cancer **BBC** bitesize freesciencelessons

AmoebaSisters

4.2.3.2 Plant **Organ System**

BBC bitesize

freesciencelessons

Amoeba Sisters

FocuseLearning

Knowledge Organiser – 4.3 Infection and response

Click on the links below		01941					Click on the links below
for online content	4.3.1.1 Communicable (infectious) diseases	Pathogen	Example in animals	Example in plants	Treatment	Tobacco	for online content
4.3.1.1.	Pathogens are microorganisms that cause infectious					mosaic virus	4.3.1.4 Fungal
Communicable	disease.	Viruses	Measles,	Tobacco mosaic	Vaccination	Y	Diseases
uiseases	Pathogens may be viruses, bacteria, protists or fungi.		HIV potentially	virus			BBC hitesize
BBC bitesize	 They may infect plants or animals and can be spread by direct context, buyyater or busic 		leading to AIDS			Rose Black	bbe bitesize
	direct contact, by water of by air.	Bacteria	Salmonella	Agrobacterium	Antibiotics	Spot	freesciencelessons
& BBC DITESIZE	body		Gonorrhoea				
freesciencelessons	 Bacteria may produce poisons (toxins) that damage 	Fungi	Athlete's foot	Rose black spot	Anti fungal medication &		& freesciencelessons
& freesciencelessons	tissues and make us feel ill				Fungicides.	Downy	
	Viruses live and reproduce inside cells, causing cell	Protists	Malaria (Spread by	Downy mildew	Anti malarial drugs	mildew	
<u>TedEd</u>	damage. Viruses are not considered to be living	11001000	mosquitos)	bouny mach	prevention from vector		
FocuseLearning	organisms.		,		contact eg mosquito nets		
		1] 1
	4.3.1.2 Viral diseases	4.3.1.3	Bacterial diseases		4.3.1.4 Fungal diseases		
4.3.1.2 Viral	Measles is a viral disease	Salmono	la food poisoning		Rose black spot is a fungal disease		
Diseases	Symptoms: fever and a red skin rash	Sorrea	ad by bacteria ingest	ed in food	Symptoms: purple or black spots develo	p on leaves,	
BBC bitesize	 Measles can be fatal if complications arise. 	or on	food prepared in ur	nhygienic	which often turn yellow and drop early.		
TodEd	 Most young children are vaccinated against measles. 	condi	itions.		It affects the growth of the plant as phot	osynthesis is	
Teucu	• The measles virus is spread by inhalation of droplets	In the	e UK, poultry are vac	cinated against	reduced.		
<u>freesciencelessons</u>	from sneezes and coughs.	salmo	onella to control the	spread.	It is spread in the environment by water	or wind. Rose	
		Symp	toms: Fever, abdom	ninal cramps,	black spot can be treated by using fungic	lides and/or	
<u>AmoebaSisters</u>	HIV initially causes a flu-like illness.	vomit	ting and diarrhoea a	re caused by the	removing and destroying the affected lea	aves.	
	Unless successfully controlled with antiretroviral drugs	bacte	eria and the toxins th	ney secrete.	A 3 1 5 Protist diseases : Malaria Life Cy		1
	the virus attacks the body's immune cells.	Gonorrh	oea is a sexually tra	insmitted disease	4.5.1.5 Protist diseases . Malaria Life Cyc		
	Late stage HIV infection, or AIDS, occurs when the	(STD)			All and a second second		
	body s immune system becomes so badly damaged it	• Symp	toms: thick yellow c	or green discharge	parasites in parasite mosquito	es in	
4 3 1 3 Bacterial	can no longer deal with other infections of cancers.	trom	the vagina or penis	and pain on	liver cells		4.3.1.5 Protist
Diseases	 Hiv is spread by sexual contact or exchange or body fluids such as blood which occurs when drug users 		ting. pasily troated with t	ho antibiotic	and a second	Λ	Diseases
Discuses	share needles		illin until many resis	tant strains	600 000	parasites in	
BBC bitesize	share needles.	anne	ared			red blood	BBC bitesize
	Tobacco mosaic virus (TMV) is a widespread plant	Sprea	nd by sexual contact			(RDC)	
<u>freesciencelessons</u>	pathogen	• The s	pread can be contro	lled by treatment	parasites in		freesciencelessons
	• Affecting many species of plants including tomatoes.	with a	antibiotics or the us	e of a barrier	mosquito gut		
<u>AmoebaSisters</u>	Symptoms: Gives a distinctive 'mosaic' pattern of	meth	od of contraception	such as a		6	TedEd
	discolouration on the leaves which affects the growth	condo	om.		100	5	<u>ICULU</u>
	of the plant due to lack of photosynthesis.				by a mosquito	Ø	
		11			in a blood meal		1

Click on the links below

Knowledge Organiser – 4.3.1.6 Human defence systems

Click on the links below	Kno	owledge Organiser – 4.4 Bioe	energetics	Click on the links below
for online content	4.4.1 Photosynthetic reaction	4.4.1.2 Rate of Photosynthesis	RPA: investigate the effect of light intensity on the rate of	for online content
4.4.1 Photosynthetic	 Captures light energy from the sun and uses it to produce chemical potential energy 	The following factors affect the rate of photosynthesis:	photosynthesis using an aquatic organism such as pondweed.	RPA Light Intensisty
reaction <u>BBC bitesize</u> <u>freesciencelessons</u>	 transfer of light energy to chemical potential energy in cells endothermic reaction. Tranned by chlorophyll in chloroplasts 	• Temperature : because all chemical reactions speed up as the temperature increases. As photosynthesis is controlled by enzymes which are affected by temperature	tamp boiling tabs	BBC bitesize & bbc bitesize
	The reaction can be shown in these equations: carbon dioxide + water $\xrightarrow{\text{light}}$ glucose + oxygen $6CO_2$ + $6H_2O \longrightarrow C_6H_{12}O_6$ + $6O_2$	Light is Light is become limiting factor has become limiting		freesciencelessons FocuseLearning
4.4.1.2 Rate of Photosynthesis <u>BBC bitesize</u>	Key TermsPhotosynthesis DefinitionsPhotosynthesisThe endothermic reaction that transfer light energy to chemical potential energy. In it, simple molecules (CO2 an H2O) are converted into more complex molecules (glucose) that can be used for	s to the second	Incontraction for the second s	
& BBC bitesize & BBC bitesize & BBC bitesize	food. Nitrates Ions containing nitrogen and oxygen. These are found in the soil; plants need nitrates to produce amino acids. Pate As always rate means how quickly	• Carbon dioxide concentration : the higher the concentration of CO2 in the air, the more is available for photosynthesis, so the rate increases as concentration increases.	Light co ² Photosynthesis (day)	
freesciencelessons AmoebaSisters	As always, rate means now quickly something happens. Light intensity The amount/strength of light. Use this term instead of 'amount of light'. Chlorophyll The green pigment in leaves that absorbs light for photosynthesis.	 Light intensity: as the equation shows, photosynthesis requires light energy. So, the higher the light intensity, the higher the rate of photosynthesis. light intensity = 	energy O ²	
4.4.1.3 Uses of glucose <u>freesciencelessons</u>	 4.4.1.3 Uses of glucose from photosynthesis Used in <u>respiration</u> in the cells of the plant/algae Converted into insoluble starch for <u>storage</u>. 	distance from source2	H ² 0 co ² (day and night)	
<u>TedED</u> <u>AmoebaSisters</u>	 Produces fats or oils (lipids) for storage. Eg Nuts & seeds Used to produce cellulose, which strengthens the cell wall. Used to produce amino acids, to synthesise proteins. To produce amino acids, plants also require nitrates from the soil. 	 C 2011 Encyclopedia Britanica, Inc. C Amount of chlorophyll: more chlorophyll means more light can be absorbed. 		

Click on the links below	Knowledg	e Organiser – 4.4 Bioene	ergetics	Click on the links below
4.4.2 Pospiration	4.4.2 Respiration	4.4.2.2 Response to exercise	4.4.2.3 Metabolism	for online content
4.4.2 Respiration BBC bitesize freesciencelessons FocuseLearning	 the chemical potential energy stored in food molecules is released through oxidation reactions The energy released allows living cells to do work including:. Chemical reactions to build larger molecules from smaller ones Movement. Keeping warm. There are two types of respiration: aerobic and anaerobic. 	 During exercise, more energy is required by the body than when resting, due to increased muscle contractions. The body reacts to this increased demand for energy: heart rate, breathing rate, and volume of each breath all increase. these increase the amount of oxygenated blood reaching the muscles. 	 Metabolism is the sum of ALL the chemical reactions happening in a cell or in the whole body. Metabolism relies on energy transferred by respiration. chemical reactions in cells are controlled by enzymes. Reactants are used to make products: new molecules are synthesised. metabolism includes these reactions: Conversion of glucose to glucogen (animals), or to 	4.4.2.3 Metabolism <u>BBC bitesize</u> <u>freesciencelessons</u>
4.4.2.1. Aerobic and Anaerobic respiration <u>BBC bitesize</u> <u>BBC bitesize</u> <u>AmoebaSisters</u>	4.4.2.1 Aerobic and anaerobic respiration4.4.2.1 Aerobic and anaerobic respiration occurs when oxygen is used in the reaction glucose + oxygen \rightarrow carbon dioxide + water $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ aerobic respiration releases much more energy than anaerobic respiration.Anaerobic respiration occurs when there is insufficient oxygen available for complete oxidation of the glucose.The reaction differs depending on the organism In animals: $D_1 = D_1 + D_2$ In animals: $D_1 = D_2 + D_2$ glucose \rightarrow ethanol and carbon dioxide $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ • oxygenated blood provides the oxygen and glucose needed for respiration in muscle cells, to more energy to meet demand.• insufficient oxygen reaches much exercise continues, the muscle c anaerobic respiration to transfer • incomplete oxidation of glucose • place• lactic acid is produced which i • lactic acid C = H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2	 oxygenated blood provides the extra oxygen and glucose needed for respiration in muscle cells, to transfer more energy to meet demand. If insufficient oxygen reaches muscles but exercise continues, the muscle cells use anaerobic respiration to transfer energy. incomplete oxidation of glucose takes place lactic acid is produced which is a poison lactic acid builds up and causes an oxygen debt causing fatigue. breathing deeply after exercise repays the oxygen debt. 	 starch or cellulose (plants). Formation of lipid (fat) molecules from one molecule of glycerol and three molecules of fatty acids In plants, the use of glucose and nitrate ions to make amino acids. These amino acids are then used to synthesise proteins. Respiration, both aerobic and anaerobic. Breaking down excess proteins into urea for excretion 	4.4.2.2 Response to Exercise <u>BBC bitesize</u> <u>BBC bitesize (HT)</u>
	 making bread (the CO2 makes it rise) making alcoholic drinks (since ethanol is a type of alcohol). 		 4.4.2.2 Response to exercise (HT) HT: oxygen debt is the amount of extra oxygen needed to react with lactic acid in muscles and remove it from cells 	
	Key Terms Respiration Definitions		The blood flow through muscles removes lactic acid and	
	Aerobic Using oxygen		transports it to the liver to be converted back into	

A reaction with oxygen. In this case, food molecules like glucose reacting with oxygen.

Tiredness. Fatigue in muscles is caused by a build-up of lactic acid, which is

produced during anaerobic respiration (when there is insufficient oxygen).

After exercise, the lactic acid has built up and caused an extra need for oxygen -

Chemical produced by the incomplete oxidation of glucose (anaerobic respiration).

Key Terms	Metabolism Definitions
Metabolism	The sum of all the chemical reactions in a cell
	or in the body of an organism.
Enzyme	Large protein molecule that acts as a
	biological catalyst, dramatically speeding up
	chemical reactions in organisms.

glucose.

Anaerobic

Oxidation

Oxygen debt

Lactic acid

Fatigue

Not using oxygen

called the oxygen debt.

Knowledge Organiser – 5.1 Atomic structure & the periodic table

Knowledge Organiser – 5.1 Atomic structure & the periodic table

Click on the links below for online content

5.2.1.5 Metallic

BBC bitesize

5.2.2.7

alloys

Properties of

metals and

BBC bitesize

& BBC bitesize

5.2.28 Metals as

freesciencelessons

Conductors

BBC bitesize

freesciencelessons

bonding

Knowledge Organiser – 5.2 Structure & bonding

Knowledge Organiser – 5.3 Quantitative Chemistry Click on the links below Click on the links below for online content for online content 5.3.2 Amounts of substances in relation to masses of pure 5.3.1.1 Conservation of mass and balanced chemical equations 5.3.1.1 substances (HT only) **Reacting masses** 5.3.2.5 Limiting Conservation of In all chemical reactions the total mass of reactants used is equal to the Reactants The Mole: Mass total mass of the products made: Reactants -----> Products • The unit for amount of substance is called the **mole**, shown as **mol**. freesciencelessons **BBC** bitesize One mole of atoms, ions or molecules is around 6×10^{23} (6 followed by 5.3.1.2 Relative Formula Mass (M_r) 5.3.1.3 Mass change when a 23 zeroes). This is called Avogadro constant. reactant or product is a gas • This is the same number as the number of carbon atoms in 12 g of **Relative atomic mass** freesciencelessons carbon. Different atoms have different masses. Apparent loss of gain in mass Atoms have such a small mass it is more convenient to know This equation shows how molar mass, number of moles and mass are 5.3.1.2 Relative when a gas is a product or their masses compared to each other. related: Formula mass reactant and is gained or Carbon is taken as the standard atom and has a relative number of moles = mass ÷ molar mass released to the atmosphere in **BBC Bitesize** atomic mass (A_r) of 12. This can be rearranged to find the mass if the number of moles and molar an non-enclosed system. mass are known, or to find the molar mass if the mass and number of &BBC Bitesize **Relative formula mass** moles are known. To find the relative formula mass (M_r) of a compound, you freesciencelessons 5.3.2 Amounts 5.3.1.4 Chemical just add together the A_r values for all the atoms in its of substances focuselearning Measurements Mass measured formula. mols in grams focuselearning Measurements have mass Example 1: **BBC** bitesize uncertainty. Gram formula mass Find the M_r of carbon monoxide (CO). Number of You need to be able to look at moles (mass of 1 mole) **BBC** bitesize Formula The A_r of carbon is 12 and the A_r of oxygen is 16 the range of measurements moles mass So the M_r of carbon monoxide is 12 + 16 = 28. about the mean (average) as a BBC bitesize measure of uncertainty. Finding the number of moles Example 2: Example freesciencelessons Find the M_r of carbon dioxide (CO2) 5.3.1.3 Mass What is the number of moles of carbon dioxide molecules in 22 g of CO2? 5.3.2.5 Limiting reactants The A_r of carbon is 12 and the A_r of oxygen is 16, but there change gases freesciencelessons A_r of C = 12, A_r of O = 16 (HT only) are 2 atoms of oxygen in the formula. **BBC** bitesize The relative formula mass M_r of carbon dioxide = 12 + 16 + 16 = 44So the M_r of Carbon dioxide is 12 + 16 + 16 = 44focuselearning In a chemical reaction This means that the molar mass of carbon dioxide = 44 g/molfreesciencelessons involving two reactants, it is number of moles = $22 \div 44 = 0.5$ mol 🐌 → 🌑 + 🧖 common to use an excess of one of the reactants to 5.3.1.4 ensure that all of the other CH₄ CO, 20, 2H,0 Chemical reactant is used. methane carbon dioxide water oxygen Moles of Mass of The reactant that is Measurements 2*32 g 2*18 g Substance (g) 16 g 44 g Substance completely used up is called **BBC** bitesize the limiting reactant Mass of reactants (80g) Mass of products (80g) because it limits the amount **BBC** bitesize Volume Volume Concentration Concentration of Liquid (L) (mol/L)of Liquid (L) (g/L)of products. focuselearning

Knowledge Organiser – 5.3 Quantitative Chemistry

Spec	Question	Answer	Spec	Question	Answer
5.3.1.1	What is the law of	The law of conservation of mass states that	5.3.2.1	What is the mass of one	The mass of one mole of a substance in grams is numerically equal
	conservation of mass?	no atoms are lost or made during a chemical	HT	mole equal to?	to its relative formula mass.
		reaction so the mass of the products equals			One mole of a substance contains the same number of the stated
		the mass of the reactants.			particles, atoms, molecules or ions as one mole of any other
5.3.1.1	What does the	This means that chemical reactions can be			substance.
	conservation of mass	represented by symbol equations which are	5.3.2.1	What is Avogadros	The number of atoms, molecules or ions in a mole of a given
	mean in terms of	balanced in terms of the numbers of atoms	HT	number, including its	substance is the Avogadro constant. The value of the Avogadro
	chemical reactions?	of each element involved on both sides of		value?	constant is 6.02 x 10 ²³ per mole
		the equation.	5.3.2.2	How many moles of	one mole of magnesium reacts with two moles of hydrochloric acid
5212	M/hat is the valative		HT	reactants and products in:	to produce one mole of magnesium chloride and one mole of
5.5.1.2	what is the relative	The relative formula mass (wir) of a		Mg + 2HCI MgCl2 + H2	hydrogen gas.
	formula mass (IVIr) of a	compound is the sum of the relative atomic	5.3.2.3	How are the balancing	The balancing numbers in a symbol equation can be calculated from
	compound?	masses of the atoms in the numbers shown	HT	numbers in a symbol	the masses of reactants and products by converting the masses in
5242		in the formula		equation calculated?	grams to amounts in moles and converting the numbers of moles to
5.3.1.2	what happens to the	The sum of the relative formula masses of	F 2 2 4	What is a limiting reastant	simple whole number ratios.
	sum of the relative	the reactants in the quantities shown equals	5.3.2.4 UT	what is a limiting reactant	he reactant that is completely used up is called the limiting reactant
	formula masses of the	the sum of the relative formula masses of		reactant affect the	The effect of a limiting quantity of a reactant on the amount of
	reactants & products?	the products in the quantities shown.		amount of products	products it is possible to obtain in terms of amounts in moles or
5.3.1.3	How can we explain a	This can usually be explained because a		produced?	masses in grams
	change in mass?	reactant or product is a gas and its mass has	5.3.2.5	How is the concentration	The concentration of a solution can be measured in mass per given
		not been taken into account.	HT	of a solution measured?	volume of solution, eg grams per dm3 (g/dm3).
5.3.1.3	Give 2 examples of	 when a metal reacts with oxygen the mass 	5.3.3.1	Why is it not always	• the reaction may not go to completion because it is reversible
	reactions where there	of the oxide produced is greater than the	нт	possible to obtain the	 some of the product may be lost when it is separated
	appears to be a change	mass of the metal		calculated amount of	• some of the reactants may react in ways different to the expected
	in mass	 thermal decompositions of metal 		product?	reaction.
		carbonates carbon dioxide is produced and	5.3.3.1	How do you calculate	% Yield = Mass of product actually made
		escapes into the atmosphere leaving the	HT	percentage yield?	Maximum theoretical mass of product x100
		metal oxide as the only solid product.	5.3.3.2	How is percentage atom	The percentage atom economy of a reaction is calculated using the
5.3.1.4	When there is	 represent the distribution of results and 	HT	economy calculated?	balanced equation for the reaction as follows:
	uncertainty about a	make estimations of uncertainty			= Relative formula mass of desired product from equation x 100
	, result, what 2 things	• use the range of a set of measurements			Sum of relative formula masses of all reactants from equation
	should you do?	about the mean as a measure of	5.3.4 HT	What information do you	If the volumes of two solutions that react completely are known and
		uncertainty		need to calculate the	the concentration of one solution is known, the concentration of the
5.3.2.1	What are chemical	Chemical amounts are measured in moles.		concentration of a soln?	other solution can be calculated.
	amounts measured in	The symbol for the unit mole is mol.	5.3.5 HT	What is the volume of one	. The volume of one mole of any gas at room temperature and
	and what is its unit?			mole of any gas at room	pressure (20oC and 1 atmosphere pressure) is 24 dm3
				temp and pressure?	

Knowledge Organiser – 5.4 Chemical Changes 1

for online content 5.4.2.1 Reactions of

Click on the links below

acids with metals

<u>BBC bitesize</u>

<u>& bbc bitesize</u>

FocuseLearning

freesciencelessons

5.4.2.2 Neutralisation of acids and salt

BBC bitesize & bbc bitesize

FocuseLearning

freesciencelessons

Knowledge Organiser – 5.4 Chemical Changes

Knowledge Organiser – 5.5 Energy Changes

Knowledge Organiser – 5.5 Energy Changes

Click on the links below for online content

5.5.1.3 Energy

change of

reactions

- 5.5.1.3 Energy change of reactions (HT only) During a chemical reaction:
- Energy must be put in to break bonds in the reactants.
- Energy is given out when bonds in the products are formed.

- If overall energy change is negative = exothermic reaction.
- If overall energy change is positive = endothermic reaction.

- In exothermic reactions, the energy released from forming new bonds is greater than the energy needed to break existing bonds.
- In endothermic reactions, the energy needed to break existing bonds is greater than the energy released from forming new bonds.
- The difference between the sum of the energy needed to break bonds in the reactants and the sum of the energy released when bonds in the products are formed is the overall energy change of the reaction.

Example:

Bond	Average bond energy (kJ mol ⁻¹)
Н — Н	436
0-Н	463
0=0	498

Bonds broken:

- 2 x H-H = 2 x 436 = 872 kJ/mol
- **O=O** = 498 kJ/mol
- Total = 872 + 498 = 1370 kJ/mol

Bonds formed:

- 4 x **H-O** = 4 x 463 = 1852 kJ/mol
- Total = 1852 kJ/mol

Total energy change = reactants - products: 1370 kJ/mol – 1852 kJ/mol = - 482 kJ/mol

Click on the links below			Kno	wledge Organiser – (6.1 Energy	joule (J) = unit of energy	Click on the links below
for online content	6.1.1.1 Ener	gy stores and systems			6.1.1.2 Changes in energy	٨	for online content
6.1.1.1. Energy	Energy store	Description	Examples	• When a force causes a body to	Kinetic energy of a moving object	Kinetic	6.1.1.2
stores and symptoms	Magnetic	The energy stored when repelling poles have been	Fridge magnets, compasses, maglev	the object by the force.	can be calculated using the equation:	Ek energy (J)	Changes of energy
<u>BBC bitesize</u>		pushed closer together or when attracting poles have	trains which use magnetic levitation.	• Work is the measure of energy transfer when a force (<i>F</i>) moves	kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$ E k = $\frac{1}{2} m(v)^2$	₩ ₩	BBC bitesize
& BBC bitesize		been pulled further apart.		an object through a distance (<i>d</i>).	 kinetic energy, <i>Ek</i>, in joules, J mass, <i>m</i>, in kilograms, kg 	0.5 m (v) ²	<u>& bbc bitesize</u>
freesciencelessons	Internal (thermal)	Total kinetic and potential	Human bodies, hot	When work is done, energy has been transferred from one	• speed, <i>v</i> , in metres per second, m/s	mass (kg) (m/s)	FocuseLearning
Focused correing	(thermal)	an object, eg the vibrations	hobs. Ice particles	 energy store to another. Therefore Energy transferred = 	Elastic potential energy stored in a		freesciencelessons
FocuseLearning		energy - of particles. In	have energy.	work done	stretched spring can be calculated	A Electic	freesciencelessons
<u>FocuseLearning</u>		hotter objects, the particles have more		Work Done	limit of proportionality has not been	potential	<u>freesciencelessons</u>
		internal energy & vibrate faster.		Work done (J)	exceeded: elastic potential energy = 0.5 ×	E (J)	FocuseLearning
	Chemical	The energy stored in chemical bonds , such as those between molecules.	Foods, muscles, electrical cells.	Force (N) F x s (m)	 spring constant × extension² E e = ½ k e² elastic potential energy, Ee, in joules 1 	0.5 k e ² (m)	FocuseLearning FocuseLearning
	Kinatia	Frankright and the second s		Distance must be in the line of action of the force	 spring constant, k, in newtons per 	Spring constant (N/m)	
	Kinetic	Energy of a moving object .	comets.	Quantity Unit	 metre, N/m extension, e, in metres, m 		
	Electrostatic	The energy stored when repelling charges have	Thunderclouds, Van De Graaff generators.	Current A Energy J	Gravitational potential energy	Gravitational	
		been moved closer together or when		Mass kg Power W	gained by an object raised above ground level can be calculated using	F S	
		attracting charges have been pulled further apart.		Time s	the equation: g.p.e. = mass × gravitational field	V -p V height (m)	
	Elastic	The energy stored when an	Drawn catapults,	Height m	strength × height	/ mgh 🖌	
	potential	object is stretched or squashed.	compressed springs, inflated balloons.	Velocity m/s	 gravitational potential energy, Ep, 	mass (kg) gravitational field	
	Gravitational	The energy of an object at	Aeroplanes, kites,	Spring constant N/m	 In joules, J mass, m, in kilograms, kg 	strength (N/kg)	
	potentia			Force N	• gravitational field strength, g, in	Gravitational field strength is	
	Nuclear	The energy stored in the nucleus of an atom.	Uranium nuclear power, nuclear	Gravitational field strength N/kg Specific heat capacity J/kg°C	 height, h, in metres, m 	9.8N/kg on Earth. (g will be given in the exam).	
		1	reactors.				

Knowledge Organiser – 6.1 Energy

• Ensure the same thickness and type of insulator is used for every repeat measurement reduce anomalies.

Click on the links below

Knowledge Organiser – 6.1 Energy

- **BBC** bitesize
- freesciencelessons
 - FocuseLearning
- freesciencelessons
 - FocuseLearning
- Measured with Voltmeter

the component.

component.

another

Voltmeter must be connected in parallel

charge (Coulomb) from one point to

• Current (*I*) through a component depends

on the **resistance** (R) of the component

and the **potential difference** (V) across

component the smaller the current for a

given potential difference (pd) across the

The greater the resistance of the

can be calculated using the equation:

potential difference = current × resistance

- free to move and carry the charge.
- Electrons moving around the circuit collide with the ions.
- This is called **resistance**.

Units of resistance = ohms. Ω

Components with high resistance often **get hot** (e.g. filament lamp).

- Electrons colliding with the ions transfer energy as heat and light.
- Causes the ions to vibrate more, increasing the resistance even more.
- This makes it harder for the electrons to pass through without collisions.

E.g. What is the resistance of a component if 12 V causes a current of 2 A through it? $R = V / I = 12V / 2A = 6\Omega$

Knowledge Organiser – 6.2 Electricity

Knowledge Organiser – 6.2 Electricity

6.2.3 Domestic uses and safety Click on the links below Click on the links below for online content for online content 6.2.4 Energy Transfers 6.2.3.1 Direct and alternating potential difference 6.2.3.1 Direct 6.2.4.3 The 6.2.4.3 The National Grid and alternating National Grid a.c. Alternating current potential In the UK, electricity 400 kV **BBC** bitesize difference has a p.d. of 230V 0V 0V FocuseLearning & a frequency of 50Hz 12 kV **BBC** bitesize 230V d.c. Direct current (it changes direction freesciencelessons One direction only. FocuseLearning 50 times a second). Eg Car batteries Power plant Step-up High-voltage Step-down freesciencelessons transformer transmission line transformer Network of cables and transformers linking 6.2.3.2 Mains electricity 6.2.4.1 Power power = potential power stations to consumers A= neutral wire. close to 0V. difference × current Step-up transformers = higher potential Power B= earth wire, 0V, only carries current if difference P = VI6.2.3.2 Mains X (W) there's a fault, stops appliance becoming D A Reduced energy loss because resistance is Electricity Current live. Potential lower in cables (high volts = fewer amps for (A) 6.2.4.1 Power difference **C**= live wire. 230V between earth and live. Ø **BBC** bitesize \odot same power) (V) **D**= Fuse, internal wire melts when current **BBC** bitesize F Step-down transformers = decrease potential is too big so breaks the circuit. freesciencelessons difference to safe level for domestic use FocuseLearning Power E= cable grip (about 230V in UK) power = FocuseLearning **/**(W) \mathbf{D}^{\prime} **F**= three-core cable, copper wire = flexible • Underground cables protected from bad current² × freesciencelessons Curren and good conductor, plastic coating. weather but get damaged by diggers in Resistance resistance & BBC bitesize (A) G= brass pins, hard wearing, good conductor ² x R freesciencelessons building projects $P = I^2 R$ **H**= plastic casing is an insulator Н **E.g.** What is the potential difference between FocuseLearning power, P, in watts, W a live wire may be dangerous even when a two points if 5 C of charge shifts 10 J? potential difference. V. in volts. V FocuseLearning 6.2.4.2 Energy switch in the mains circuit is open V = E/Qcurrent, I, in amps, A • It is dangerous to provide any connection Transfers = 10J / 5Cresistance, R, in ohms, Ω between the live wire and earth. = 2 volts **BBC** bitesize 6.2.4.2 Energy transfers in everyday appliances freesciencelessons Energy • The rate at which energy is transferred by an transferred Energy FocuseLearning energy transferred, E, in joules, J appliance is called the **power**. Potential transfer E • power, P, in watts, W Difference Also known as "work done" by the components (J) freesciencelessons • time, *t*, in seconds, s (V) in the circuit when charge flows. Charge Power/ time • charge flow. Q. in coulombs. C (s) (C) freesciencelessons (W) The energy transferred by an appliance potential difference, V, in volts, V depends on how long it is switched on for and focuselearning the power of the appliance.

Knowledge Organiser – 6.3 Particle model of matter

Knowledge Organiser – 6.3 Particle model of matter

Click on the links below for online content

6.3.2.2 Changes of heat and specific latent heat

<u>BBC bitesize</u>

- freesciencelessons
- **FocuseLearning**
- <u>& bbc bitesize</u>
- freesciencelessons

6.3.2.3 Changes of heat and specific latent heat

If a change of state happens:

- The energy needed for a substance to change state is called **latent heat**.
- When a change of state occurs, the energy supplied changes the energy stored (internal energy) but does not change the temperature.
- specific latent heat of a substance is the amount of energy required to change the state of one kilogram of the substance with no change in temperature.

energy for a change of state = mass × specific latent heat

- E =mL
- energy, E, in joules, J
- mass, *m*, in kilograms, kg
- specific latent heat, L, in joules per kilogram, J/kg
- specific latent heat, L, in joules per kilogram, J/kg

Specific latent heat of fusion - change of state from solid to liquid

Specific latent heat of vaporisation - change of state from liquid to vapour

6.3.3.1 Particle motion in gases

- Molecules of gas in constant random motion
- Temperature of gas related to average kinetic energy of the molecules
- Changing the temperature of a gas, held at constant volume, changes the pressure exerted by the gas

Click on the links below for online content

6.3.3.1 Particle motion in gases

BBC bitesize

<u>& bbc bitesize</u>

FocuseLearning

freesciencelessons

freesciencelessons

Knowledge Organiser – 6.4 Atomic Structure

Click on the links below for online content

freesciencelessons

FocuseLearning

6.4.1.1 The structure of an atom

6.4.1.1 The Atoms are very small, having a radius of about **1 x 10⁻¹⁰ metres**. They make up all of the matter around us. The basic structure of structure of an an atom consists of a **positively charged nucleus** composed of atom protons and neutrons surrounded by negatively charged **BBC** bitesize electrons.

The electrons are arranged at different distances from the nucleus known both as **shells** and **energy levels**. They are the represented by the circles around the nucleus on the diagram.

Electron arrangements can change with absorption of electromagnetic radiation or emission of electromagnetic radiation.

6.4.1.2 Mass number, atomic number and isotopes

The numbers on the periodic table are called the **mass number** and the **atomic number**. The atomic number (proton number): Smaller number, tells you the number of protons are in an atom of that element. There will be the same number of electrons as protons. Mass number: larger number, tells you how many neutrons and protons combined are in that atom.

Calculate neutrons by taking away the atomic number from the mass number.

Isotopes: Versions of same element (same number of protons) with different numbers of neutrons in their nuclei.

Atoms turn into **positive ions**, if they lose one or more outer electron(s)

6.4.1.3 The development of the model of the atom

Key

relative atomic mass

atomic symbol

name

- Experimental evidence may lead to a scientific model changing over time. Atoms were originally thought to have been solid spheres of matter.
- The **discovery** of the **electron** led to the plum pudding model which suggested a positive ball of charge containing negative particles.
- Rutherford's alpha particle scattering experiment led to the conclusion that the mass of an atom was concentrated with a positively charged nucleus.
- This nuclear model replaced the previous
 - one.

- Niels Bohr adapted the nuclear model by suggesting that electrons orbit the nucleus at specific distances.
- Later experiments identified positive particles which were called protons.
- The experimental work of James Chadwick provided the evidence to show the existence of neutrons within the nucleus.

6.4.1.3 The development of the model of the atom

Click on the links below

6.4.1.2 Mass

and isotopes

BBC bitesize

& bbc bitesize

freesciencelessons

atomic number

for online content

number,

BBC bitesize

& bbc bitesize

& bbc bitesize

FocuseLearning

freesciencelessons

Knowledge Organiser – 6.4 Atomic Structure

FocuseLearning
freesciencelessons

- Paper
 Aluminium
 Lead

 Activity is the rate at which a source of unstable
- nuclei decays.
- Activity is measured in **becquerel** (Bq)
- **Count-rate** is the number of decays recorded each second by a detector (e.g. Geiger-Muller tube).

Contamination: Exposing an Occurs when an object is exposed to a source Occurs if the radioactive source is on or in the Unwanted object to of radiation outside the object object nuclear presence of Doesn't cause the object to become A contaminated object will be radioactive for as radiation. the materials radioactive long as the source is on or in it object does not containing Once an object is contaminated, the radiation Can be blocked from the object with suitable become radioactive shielding cannot be blocked from the object radioactive but atoms on other It can be very difficult to remove all of the it can still Stops as soon as the source is removed materials. contamination damage cells.