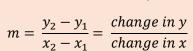

Algebra - Foundation

Notation

 $ab = a \times b$ $a^2 = a \times a$ $(2a)^3 = 2a \times 2a \times 2a$ $(a + b)^2 = (a + b)(a + b)$


Expression – no equal signs e.g. 2x + 3, 2y, $(3x - 2)^2$ Equations – equal signs, can be solved, e.g. y + 4 = 10Identities – identical/equivalent to e.g. $2(y + 4) \equiv 2y + 8$

Factorising and expanding

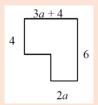
Straight line graphs

v = mx + cm = gradientc = y - intercept

negative gradient

Parallel lines – have equal gradients

positive gradient


Definitions

Formulae – equal signs, more than one unknown e.g. A= ½bh

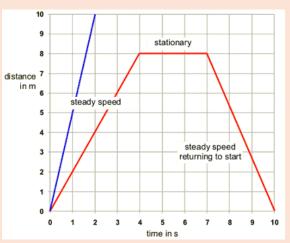
Simplifying expressions by collecting like terms

Always circle the sign IN FRONT of the term to avoid errors.

$$3x - 7b - x + 9b \equiv 2x + 2b$$

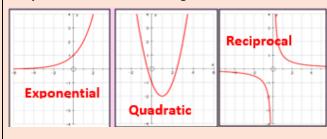
Typical Exam Q: Create an expression for the perimeter of the shape by adding and collecting like terms.

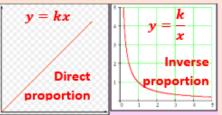
If the perimeter is given as 20cm, for example, you can create an equation:


$$4 + 3a + 4 + 6 + 2a = 20$$

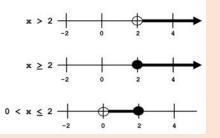
 $5a + 14 = 20$

Simplifying expressions multiplication and division

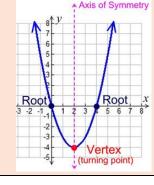

$$2ma^2 \times 7ma = 14m^2a^3$$


$$\frac{18b^6}{3ab^2} = \frac{6b^4}{a}$$

Distance / Time Graphs



Graphs that need to be recognised



Inequalities

Open circle: </>> Closed circle: \leq / \geq **Turning point and** roots of a quadratic equation

Finding the nth term of a linear sequence

5, 7, 9, 11, 13,

- 1. Find the common difference: 2
- 2. This is the coefficient of n: 2n
- 3. Find the difference between the coefficient of n and the first term 5-2=3
- 4. Add this to the amount of n

Geometry and Measures - Foundation

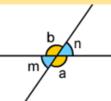
Trigonometry

$$S\frac{O}{H}C\frac{A}{H}T\frac{O}{A}$$

Example - finding a side:

$$\sin 37 = \frac{x}{5}$$

 $x = 5 \times \sin 37^{\circ}$


Example – finding a side:

$$\tan y = \frac{3.2}{7.1}$$

$$y = tan^{-1} \left(\frac{3.2}{7.1}\right).$$

Angle Facts

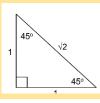
Vertically opposite angles are equal: a=b and m=n

Angles in a triangle sum to 180°.

Angles on a straight line sum to 180°.

E.G: $b=60^{\circ}$ so $a=50^{\circ}$

Angles in parallel lines


Corresponding angles are equal

Alternate angles are equal

Co-interior angles add to 180.

Exact Trig values

Angle (θ)	sin(θ)	cos(θ)	tan(θ)
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	undefined

Simple vector notation

 $\binom{a}{b}$

a: movement along the x-axis (left or right)b: movement along the y-axis (up or down)

-a: movement left

-b: movement down

Operations with vectors

$$\binom{2}{6} + \binom{7}{-3} = \binom{9}{3}$$

If $b = \binom{4}{-2}$, then $3b = \binom{12}{-6}$

Volume & surface area

Volume = area of cross section x length

Surface area = area of all the faces of a 3D shape

Learn the cylinder

$$V = \pi r^2 h$$
$$SA = 2\pi r^2 + \pi dl$$

Types of triangles

Right angled Isosceles Equilateral Scalene

Types of quadrilaterals

Square Rectangle Parallelogram Rhombus Trapezium Kite

Area of key shapes

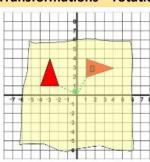
Triangle : $A = \frac{b \times h}{2}$ (h = perpendicular height)

Parallelogram: A = b x h (h = perpendicular height)

Trapezium: $A = \left(\frac{a+b}{2}\right) \times h$ (add together the parallel sides, divide the total by 2, and then multiply by the perpendicular height between the parallel sides)

Angles in regular polygons

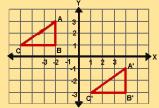
n = number of sides



Interior angle + exterior angle = 180°

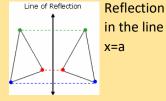
Exterior angle =
$$\frac{360}{n}$$

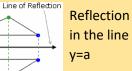
$$n = \frac{360}{Exterior \ angle}$$


Transformations - rotation

Always use tracing paper. Describe:

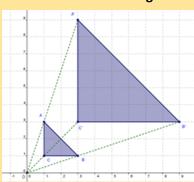
- 1. It's a rotation
- 2. Size of rotation in degrees
- 3. Orientations: clockwise or anticlockwise
- 4. Centre of rotation given as a coordinate (x,y)


Transformations – translations and reflections

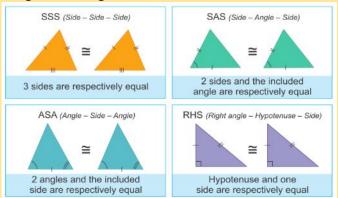


Translate triangle

ABC to A'B'C' with


the vector $\binom{6}{4}$

Reflection


Transformations - enlargement

Describe:

- It's an enlargement
- The scale factor (if the image is smaller than the object the scale factor is fractional e.g. ½)
- 3. The centre of enlargement given as a coordinate

Congruent triangles

Circles

Sector
$$Area = \frac{\theta}{360}\pi r^2$$

$$Circumference = \pi d$$

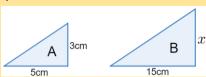
Arc length =
$$\frac{\theta}{360}\pi d$$

Pythagoras' Theorem

$$a^2 + b^2 = c^2$$

Only applies to right angled triangles.

Can be used to find the height of an isosceles triangle



Can be used to find the length distance between two coordinates

Similar shapes

Same shape, different sides

The ratio of the lengths of corresponding sides are egual

Length scale factor = $15 \div 5 = 3$

x = 3 cm x 3

3D notation

Cube:

Faces: 6

Edges: 12

Vertices: 8

Square based pyramid:

Bearings

Measure from the North Measured in a clockwise direction Written using 3 digits

Bearing of B from A (start at A)

Bearing of A from B (start at B)

Number Ratio and Proportion - Foundation

Estimate

Round each value to one significant figure

Standard form

 $a \times 10^n$, where $1 \le a < 10$

Reciprocal

Reciprocal of 7 is $\frac{1}{7}$, reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ etc

Sequences

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21

Geometric Sequence: each term is multiplied but he same constant to get the next number.

E.g. 3, 12, 48, 191, (x by 4 each time)

Simplifying Ratio

Divide both sides by the highest common factor

Simplifying Ratio 1:n

1:0.9

Divide both sides by the highest factor of the left hand side

2m: 180cm 200cm: 180cm 2:1.8

Squares and Cubes

Square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225 etc

Cube numbers: 1, 8, 27, 64, 125, 216, 343, 512, etc

Sharing in a given Ratio

A Add the ratio parts

D Divide the amount by the total parts

A and

M Multiply the ratio by the value of one part

e.g. share £420 in the ratio 2:5

$$2 + 5 = 7$$

 $420 \div 7 = £60$
 $2: 5$

(x60) (x60) £120:£300

Fractions

Add and Subtract – ensure the fractions have the same denominator before adding numerators

$$\frac{4}{5} - \frac{1}{3} = \frac{12}{15} - \frac{5}{15} = \frac{7}{15}$$

Multiply – multiply numerators and denominators

$$\frac{4}{5} \times \frac{1}{3} = \frac{4}{15}$$

Divide – take reciprocal of the second fraction and then multiply the new numerators and denominators

$$\frac{4}{5} \div \frac{1}{3} = \frac{4}{5} \times \frac{3}{1} = \frac{12}{5} = 2\frac{2}{5}$$

Percentages

Finding percentages of an amount

1% ÷100 5% ÷20 20% ÷5

25% ÷4 50% ÷2

Multipliers:

To find the multiplier for a percentage, divide by 100

Use multipliers on a calculator paper e.g. 35% of $370 = 0.35 \times 370$

Increasing and decreasing a given amount

Calculator:

 $Orginal\ Amount\ x\ mutiplier = new\ amount$

Non-calculator: find the increase or decrease and add to the original amount

Finding percentage increase or decrease (profit/loss)

 $\frac{value\ of\ increase/decrease}{Original} \times 100$

Writing an amount as a percentage of the original

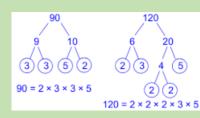
 $\frac{Amount}{Original} \times 100$

Reverse Percentage – finding the original amount

$$Orginal\ Amount = \frac{\textit{New Amount}}{\textit{multiplier}}$$

Growth & Decay / Compound interest	Dividing by decimals:	Conversions	
	Write the calculation as a fraction	10 millimetres = 1 centimetre	15 minutes = 0.25
original amount $ imes$ multiplier time	2. Form an equivalent fraction to makes integers	hours	
	(multiply by powers of 10)	100 centimetres = 1 metre	30 minutes = 0.5
Where the multiplier is the percentage, increase or	3. Use short division (bus stop) to calculate	hours	
decrease from 100%, converted to a decimal.		1000 metres = 1 kilometre	45 minutes = 0.75
e.g.	e.g. $460 \div 0.4 = \frac{460}{0.4} = \frac{4600}{4} = 1150$	hours	
30% decrease is 70% = 0.7	0.4 4	1000cm ³ = 1 litre	1000g = 1 kilogram
30% increase is 130% = 1.3		1000ml = 1 litre	1000kg = 1 tonne
Compound Units (rearrange as necessary)	Error Intervals	Negative numbers	
	least possible value $\leq x <$ greatest possible value	Adding and subtracting: (vertic	al number lines help)
Distance		-3 - 5 = -8	
$Speed = \frac{Distance}{Time}$	e.g. A fence is 30 m long to the nearest 10 m.	-3 + 5 = 2	
Time	$25 \text{ m} \le l < 35 \text{ m}$	-3 5 = -3 + 5 = 2	
		-3 - + 5 = -3 - 5 = -8	
$Area = \frac{Force}{Pressure}$	Truncation	-3 + - 5 = -3 - 5 = -8	
$\frac{Area}{Pressure}$	Truncation is a method of approximating a decimal		
	number by dropping all decimal places past a certain	Multiplying and dividing:	
	point without rounding.	Different signs – answer will be	e negative
$Density = \frac{Mass}{Volume}$		+ x - = -, - x + = -	
$\frac{Density - \overline{Volume}}{Volume}$	e.g. Truncate 3.14159265 to 4 decimal places.	Same signs – answer will be po	sitive
	= 3.1415	- x - = +	
Ordering fractions	Order of operations	Rounding to significant figures	
Calc: use division to write each fraction as a decimal	Bracket	Start from the first non-zero number and round as	
Non-calc: write fractions with common denominators	Indices	normal, but ensure the place v	alue is correct
	D ivision and M ultiplication	e.g. 345,635 to 2SF = 350,000	
	Addition and Subtraction	0.0060821 to 3SF = 0.0608	8
Index Laws	Prime Factorisation HCF and	LCM of 90 and 120 (Factor Tree &	Venn Diagram)
$a^n \times a^m - a^{n+m}$	HCE is the product of common factors		

$$a^{n} \times a^{m} = a^{n+m}$$


$$a^{n} \div a^{m} = a^{n-m}$$

$$(a^{n})^{m} = a^{nm}$$

$$a^{0} = 1$$

$$a^{-n} = \frac{1}{a^{n}}$$

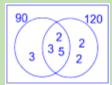

$$a^{\frac{n}{m}} = \sqrt[m]{a^{n}}$$

Diagram)

HCF is the product of common factors

LCM is the product of common factors and remaining factors.

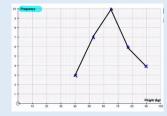
HCF: 2x3x5 LCM: 2³x3²x5

Probability and Statistics - Foundation

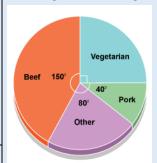
Averages

Mode: most common piece of data

Mean: Sum of the data ÷ total frequency


Median: order the data and find the middle value

Range: Highest value – lowest value


Frequency Polygons

- 1. Plot frequency at the mid-point
- 2. Join with straight lines

Weight w (kg)	Frequency	
30 ≤ w < 50	3	
50 ≤ w < 55	7	
55 ≤ w < 75	10	
75 ≤ w < 80	6	
80 ≤ w < 100	4	

Reading and Drawing Pie Charts

Find the fraction of the total

1000 people were surveyed

Beef:
$$\frac{150}{360} \times 1000$$

Vegetarian: $\frac{90}{360} \times 1000$

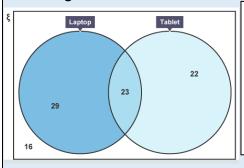
Hair colour	People	
Blonde	8	
Brown	12	
Red	3	
Grey	2	
Black	6	

Expected outcomes

Find the fraction of the full circle.

Size of Blonde sector: $\frac{8}{31} \times 360^{\circ}$

Averages from a frequency table


Mean: $\frac{\sum fw}{\sum f}$; where, w is the midpoint of the group.

Median group: find which group the $\frac{n+1}{2}th$, value lies. Where, n is the total frequency.

E.G. in this table 51.5th value which lies in group $8 < w \le 12$ (using the cumulative frequency

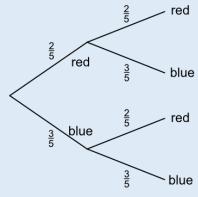
Weight of box (w kg)	Frequency	
0 < w ≤ 4	11	
4 < w ≤ 8	16	
8 < w ≤ 12	29	
12 < w ≤ 16	26	
16 < w ≤ 20	20	

Venn Diagrams

Information given:
90 pupils were
surveyed
52 said they owned
a laptop.
45 said they owned
a tablet.
23 said they owned

both.

Expected outcome = probability x number of trials


E.g. A biased spinner is spun 800 times. The probabilities is lands on each colour is below. The probability of it landing on red is the same as the probability of it landing on green. How many times would you expect yellow to come up.

Result	Red	Green	Brown	Yellow
Probability		0.48	0.2	

$$P(Y) = (1 - 0.48 - 0.2) \div 2 = 0.32 \div 2 = 0.16$$

Expected yellow = $0.16 \times 800 = 128$

Tree diagrams

Multiply along the branches to find each probability.

- 1. Probability that a red counter is picked both times $P(RR) = \frac{2}{5} \times \frac{2}{5} = \frac{4}{25}$
- 2. Probability that the counters are different colours = P(RB) + P(BR) = $\frac{2}{5}$ x $\frac{3}{5}$ + $\frac{3}{5}$ x $\frac{2}{5}$ = $\frac{12}{25}$

Probability Definitions

Total probability: adds to 1

Relative frequency: $frequency \div total \ trials$

Independent events: one event doesn't impact the other