	•	
Quadratic Formula	Algebriac proof – toolkit	Straight line graphs
$-b \pm \sqrt{b^2 - 4ac}$	Even numbers: 2n, 2n+2, 2n+4,	y = mx + c
$x = \frac{2a}{2}$	Odd numbers: 2n+1, 2n+3, 2n+5,	m = gradient
Linear Inequalities $\begin{array}{c} x > 2 \xrightarrow{-2} & 0 & 2 & 4 \\ x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \le 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} & 0 & 2 & 4 \\ 0 < x \ge 2 \xrightarrow{-2} $	Sum: add Product: multiply Difference: subtract Show it's a multiple: factorise Show it's even: show it's a multiple of 2 Show it's odd: show it's a multiple of 2, plus 1 Completing the square Quadratic expression factorised by completing the square: $(x + a)^2 + b$	$c = y - intercept$ positive gradient $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{change in y}{change in x}$ Parallel lines – have equal gradients Perpendicular lines – If L ₁ and L ₂ are perpendicular then $m_2 = -\frac{1}{m_1}$
Iteration – showing a root lies between 2 points: If there is a change in sign for y for two particular values of x then we can say there is a root between these values of x and we can say that the equation $f(x) = 0$ will have a solution between these two values of x.	Solve quadratic inequalities e.g solve $x^2 + 5x - 24 \ge 0$ 1. Factorise: $(x + 8)(x - 3) \ge 0$ 2. Solve: $x = -8, x = 3$ 3. Sketch the graph 4. Values that satisfy the inequality $x \le -8, x \ge 3$	Graphs that need to be recognised:
Gradiants of surves	Turning point and Axis of Symmetry	
Gradients of curves Gradient of a curve at a point = gradient of the	roots of a quadratic equation	Equation of a circle centre (0, 0) $x^2 + y^2 = r^2$
tangent at the point	Root -3 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -3 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -3 -4 -5 -5 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -3 -4 -5 -5 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -1 -1 -2 -3 -5 -6 -7 -8 -2 -1 -2 -3 -5 -6 -7 -8 -2 -1 -2 -3 -5 -6 -7 -8 -2 -1 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Functions f(4): Substitute 4 into the function f(g(x)): Substitute $g(x)$ into $f(x)$ i.e. replace all values of x in $f(x)$ with the <u>entire</u> function $g(x)$ e.g. $f(x) = 2x + 3$, $g(x) = x - 3$, $fg(x) = 2(x-3) + 3$

Algebra - Higher

Geometry and measure - Higher

Number Ratio and Proportion - Higher

Fatimata	Peauwing Decimals	Deveentegee
		Percentages
Round each value to one significant figure	Form two equations where the digits following the	
	decimal point are the same, and therefore can be	Finding percentages of an amount
Standard form	cancelled	1% ÷100
$a \times 10^n$, where $1 \le a < 10$		5% ÷20
		20% ÷5
Reciprocal	Upper and lower bounds	25% ÷4
Reciprocal of 7 is $\frac{1}{2}$, reciprocal of $\frac{2}{2}$ is $\frac{3}{2}$ etc	Look at the value above and below for the same place	50% ÷2
- / - 3 2	value. LB and UB will be half way between these points	
Sequences		Multipliers:
Sequences	e.g. 17 rounded to the nearest integer	To find the multiplier for a percentage, divide by 100
Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21	16 17 18	
Geometric Sequence: each term is multiplied but he		Use multipliers on a calculator paper
same constant to get the next number		α g 25% of 270 = 0.25 x 270
same constant to get the next humber.	e.g. 24.6 roudned to one decimal place	e.g. 55% 01 570 - 0.55 x 570
E.g. 3, 12, 48, 191, (x by 4 each time)	IB = 24.55 $IIB = 24.65$	
	LD - 24.33, OD - 24.03	
Simplifying Surds	Fractions	Increasing and decreasing a given amount
Find a factor that is a square number		Calculator:
$\sqrt{96} = \sqrt{16 \times 6} = 4\sqrt{6}$	Add and Subtract – ensure the fractions have the same	Orginal Amount x mutiplier = new amount
	denominator before adding numerators	
Manipulating surds	4 1 12 5 7	Non-calculator: find the increase or decrease and add
$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$	$\overline{5} - \overline{3} = \overline{15} - \overline{15} = \overline{15}$	to the original amount
$\sqrt{ub} = \sqrt{u} \times \sqrt{b}$		
$\left \frac{a}{a}\right = \frac{\sqrt{a}}{a}$	Multiply – multiply numerators and denominators	Finding percentage increase or decrease (profit/loss)
\sqrt{b}	4 1 4	value of increase/decrease
Rationalising Surds	$\frac{1}{5} \times \frac{1}{3} = \frac{1}{15}$	Original × 100
Rationalise by removing any surds from the	5 5 15	
denominator		Writing an amount as a percentage of the original
E.G with surd.	Divide – take reciprocal of the second fraction and then	Amount
$2\sqrt{3}$ $2\sqrt{3} \times \sqrt{5}$ $2\sqrt{3 \times 5}$ $2\sqrt{15}$ $2\sqrt{15}$	multiply the new numerators and denominators	$\frac{1}{Original} \times 100$
$\frac{1}{\sqrt{E}} = \frac{1}{\sqrt{E} \times \sqrt{E}} = \frac{1}{\sqrt{E} \times E} = \frac{1}{\sqrt{2E}} = \frac{1}{5}$	4 1 4 3 12 2	original
$\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{25}$ $\sqrt{25}$	$\frac{1}{5} \div \frac{1}{2} = \frac{1}{5} \times \frac{1}{5} = \frac{1}{5} = 2\frac{1}{5}$	Boyorse Percentage finding the original amount
by the denominator with the ennosite sign	5 5 5 5 5	
		New Amount
$\frac{5}{3} = \frac{5 \times (3 - \sqrt{2})}{3} = \frac{5(3 - \sqrt{2})}{3}$		$Orginal Amount = \frac{New Hindunt}{multiplice}$
$3 + \sqrt{2}$ $(3 + \sqrt{2}) \times (3 - \sqrt{2})$ $9 - \sqrt{4}$		multiplier
$5(3-\sqrt{2})$		
$=\frac{\sqrt{1+y}}{7}$		
,		

Growth & Decay / Compound interest	Dividing by decimals:	Conversions
	1. Write the calculation as a fraction	10 millimetres = 1 centimetre 15 minutes = 0.25
original amount × multiplier ^{time}	2. Form an equivalent fraction to makes integers	hours
	(multiply by powers of 10)	100 centimetres = 1 metre 30 minutes = 0.5
Where the multiplier is the percentage, increase or	3. Use short division (bus stop) to calculate	hours
decrease from 100%, converted to a decimal.		1000 metres = 1 kilometre 45 minutes = 0.75
e.g.	e.g. $460 \div 0.4 = \frac{460}{0.4} = \frac{4600}{4} = 1150$	hours
30% decrease is 70% = 0.7	0.4 4	1000cm ³ = 1 litre 1000g = 1 kilogram
30% increase is 130% = 1.3		1000ml = 1 litre 1000kg = 1 tonne
Compound Units (rearrange as necessary)	Error Intervals	Negative numbers
	least possible value $\leq x <$ greatest possible value	Adding and subtracting: (vertical number lines help)
Distance		-3 - 5 = - 8
Speed =	e.g. A fence is 30 m long to the nearest 10 m.	-3 + 5 = 2
	$25 \text{ m} \le l < 35 \text{ m}$	-3 5 = -3 + 5 = 2
_		-3 - + 5 = -3 - 5 = -8
$Area = \frac{Force}{1}$	Truncation	-3 + - 5 = -3 - 5 = -8
Pressure	I runcation is a method of approximating a decimal number	
	rounding	Multiplying and dividing:
Мала	Tounding.	Different signs – answer will be negative
$Density = \frac{Mass}{\dots}$	e.g. Truncate 3.14159265 to 4 decimal places.	+ x - = -, - x + = -
Volume	= 3.1415	Same signs – answer will be positive
		- x - = +
Product rule	Order of operations	Rounding to significant figures
If there are <i>m</i> ways to do one thing and <i>n</i> ways to do	Bracket	Start from the first non-zero number and round as
another, then there are m x n ways to do both	Indices	normal, but ensure the place value is correct
	Division and Multiplication	e.g. $345,635$ to $25F = 350,000$
ladev Lewe	Addition and Subtraction	0.0060821 (0.35F = 0.0608)
$a^n \times a^m = a^{n+m}$	HCE is the p	roduct of common factors
$a \wedge a = a$ $a^{n} \div a^{m} = a^{n-m}$	90 120 ICM is the p	roduct of common factors and remaining factors.
$(a^n)^m = a^{nm}$		HCF: 2x3x5
$a^{0} = 1$		LCM: 2 ³ x3 ² x5
1		$\begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} = 2$
$a^{n} = \frac{1}{a^{n}}$	90 = 2 × 3 × 3 × 5 (2) (2)	2
$a\frac{n}{m} = \sqrt[m]{a^n}$	120 = 2 × 2 × 2 × 3 × 5	

Probability and Statistics - Higher

